
A First Course on Kinetics and Reaction 
Engineering

Class 15 on Unit 15



Where We’re Going

• Part I - Chemical Reactions
• Part II - Chemical Reaction Kinetics

‣ A. Rate Expressions
‣ B. Kinetics Experiments
‣ C. Analysis of Kinetics Data

- 13. CSTR Data Analysis
- 14. Differential Data Analysis
- 15. Integral Data Analysis
- 16. Numerical Data Analysis

• Part III - Chemical Reaction Engineering
• Part IV - Non-Ideal Reactions and Reactors

2



Integral Data Analysis

• Distinguishing features of integral data analysis
‣ The model equation is a differential equation
‣ The differential equation is integrated to obtain an algebraic equation which is then fit to the 

experimental data

• Before it can be integrated, the differential model equation must be re-
written so the only variable quantities it contains are the dependent and 
independent variables
‣ For a batch reactor, ni and t
‣ For a PFR, ṅi and z
‣ Be careful with gas phase reactions where the number of moles changes

- P and ntot (in a batch reactor) or     and ṅtot (in a PFR) will be variable quantities

• Often the integrated form of the PFR design equation cannot be linearized
‣ Use non-linear least squared (Unit 16)
‣ If there is only one kinetic parameter

- Calculate its value for every data point
- Average the results and find the standard deviation
- If the standard deviation is a small fraction of the average and if the deviations of the 

individual values from the average are random

• The model is accurate

• The average is the best value for the parameter and the standard deviation is a 
measure of the uncertainty

 !V
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Half-life Method

• Useful for testing rate expressions that depend, in a power-law fashion, 
upon the concentration of a single reactant
‣  

• The half-life, t1/2, is the amount of time that it takes for the concentration of 
the reactant to decrease to one-half of its initial value.
• The dependence of the half-life upon the initial concentration can be used 

to determine the reaction order, α
‣ if the half-life does not change as the initial concentration of A is varied, the reaction is first 

order (α = 1)

-  

‣ otherwise, the half-life and the initial concentration are related

-  

- the reaction order can be found from the slope of a plot of the log of the half-life versus the 
log of the initial concentration

 rA = −k CA( )α

  
t1/2 =

0.693
k

  

t1/2 =
2α−1 −1( )

k α −1( ) CA
0( )α−1      ⇒      ln t1/2( ) = 1−α( )ln CA

0( ) + ln
2α−1 −1( )
k α −1( )
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Requirements for Linear Least Squares

• The model must be of the form y = m1x1 + m2x2 + ... + mnxn + b
‣ m2 through mn may equal zero
‣ b may equal zero

• The non-zero slopes, m1 through mn, and the intercept, b, (if not equal to 
zero) must each contain a unique unknown constant
‣ They may not contain quantities that change from one data point to the next
‣ They cannot be known constants

• The response variable, y, and the set variables, x1 through xn, must be 
unique quantities that change from one data point to the next
• If the original data are quantities other than y and x1 through xn, then 

values for y and x1 through xn, must be calculated for each data point
• The model equation must be fit to the corresponding x and y data

‣ The slope and intercept are not found by plotting the data; they are found by fitting the model 
to the data

• The fitted model must be assessed to determine whether it is sufficiently 
accurate

5

ln k( ) = −E
R

⎛
⎝⎜

⎞
⎠⎟

1
T
+ 1

2
ln T( ) + ln k0( )      ⇒      y = m1x1 +m2x2 + bx

ln k( )− 1
2

ln T( ) = −E
R

⎛
⎝⎜

⎞
⎠⎟

1
T
+ ln k0( )      ⇒      y = m1x1 + b



Questions?
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Activity 15.1

A rate expression is needed for the 
reaction A  → Y + Z, which takes 
place in the liquid phase. It doesn’t 
need to be highly accurate, but it is 
needed quickly. Only one 
experimental run has been made, 
that using an isothermal batch 
reactor. The reactor volume was 750 
mL and the reaction was run at 70 °C. 
The initial concentration of A was 1M, 
and the concentration was measured 
at several times after the reaction 
began; the data are listed in the table 
on the right.

Find the best value for a first order 
rate coefficient using the integral 
method of analysis.

t (min) CA(M)
1 0.874
2 0.837
3 0.800
4 0.750
5 0.572
6 0.626
7 0.404
8 0.458
9 0.339
10 0.431
12 0.249
15 0.172
20 0.185
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Solution

• Read through the problem statement and each time you encounter a 
quantity, assign it to the appropriate variable
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Solution

• Read through the problem statement and each time you encounter a 
quantity, assign it to the appropriate variable.
‣ V = 750 mL
‣ T = (70 + 273.15) K
‣ CA0 = 1 mol L-1

‣ ti and CA,i are given for each of the data points, i

• Write the mole balance design equation for the reactor used in the 
experiments. This equation will be used to model each of the experiments, 
i
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Solution

• Read through the problem statement and each time you encounter a 
quantity, assign it to the appropriate variable.
‣ V = 750 mL
‣ T = (70 + 273.15) K
‣ CA0 = 1 mol L-1

‣ ti and CA,i are given for each of the data points, i

• Write the mole balance design equation for the reactor used in the 
experiments. This equation will be used to model each of the experiments, 
i
‣ Mole balance on A: 

• Substitute the rate expression to be tested into the design equation

10

dnA
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Solution

• Read through the problem statement and each time you encounter a 
quantity, assign it to the appropriate variable.
‣ V = 750 mL
‣ T = (70 + 273.15) K
‣ CA0 = 1 mol L-1

‣ ti and CA,i are given for each of the data points, i

• Write the mole balance design equation for the reactor used in the 
experiments. This equation will be used to model each of the experiments, 
i
‣ Mole balance on A: 

• Substitute the rate expression to be tested into the design equation
‣ Rate expression:

‣ Mole balance after substitution:

• Integrate the mole balance
‣ Identify the dependent and independent variables
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Solution

• Read through the problem statement and each time you encounter a 
quantity, assign it to the appropriate variable.
‣ V = 750 mL
‣ T = (70 + 273.15) K
‣ CA0 = 1 mol L-1

‣ ti and CA,i are given for each of the data points, i

• Write the mole balance design equation for the reactor used in the 
experiments. This equation will be used to model each of the experiments, 
i
‣ Mole balance on A: 

• Substitute the rate expression to be tested into the design equation
‣ Rate expression:

‣ Mole balance after substitution:

• Integrate the mole balance
‣ Identify the dependent and independent variables: nA and t
‣ Identify any other variable quantities appearing in the mole balance 
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Solution

• Read through the problem statement and each time you encounter a 
quantity, assign it to the appropriate variable.
‣ V = 750 mL
‣ T = (70 + 273.15) K
‣ CA0 = 1 mol L-1

‣ ti and CA,i are given for each of the data points, i

• Write the mole balance design equation for the reactor used in the 
experiments. This equation will be used to model each of the experiments, 
i
‣ Mole balance on A: 

• Substitute the rate expression to be tested into the design equation
‣ Rate expression:

‣ Mole balance after substitution:

• Integrate the mole balance
‣ Identify the dependent and independent variables: nA and t
‣ Identify any other variable quantities appearing in the mole balance: CA

‣ Express the other variables in terms of the dependent variable and the independent variable

13

dnA
dt

=VrA

rA = −kCA
dnA
dt

= −kVCA



Solution

• Read through the problem statement and each time you encounter a 
quantity, assign it to the appropriate variable.
‣ V = 750 mL
‣ T = (70 + 273.15) K
‣ CA0 = 1 mol L-1

‣ ti and CA,i are given for each of the data points, i

• Write the mole balance design equation for the reactor used in the 
experiments. This equation will be used to model each of the experiments, 
i
‣ Mole balance on A: 

• Substitute the rate expression to be tested into the design equation
‣ Rate expression:

‣ Mole balance after substitution:

• Integrate the mole balance
‣ Identify the dependent and independent variables: nA and t
‣ Identify any other variable quantities appearing in the mole balance: CA

‣ Express the other variables in terms of the dependent variable and the independent variable

-  
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‣ Substitute for the other variables in the design equation
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‣ Substitute for the other variables in the design equation:

‣ Separate the variables
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‣ Substitute for the other variables in the design equation:

‣ Separate the variables:

‣ Integrate the design equation
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‣ Substitute for the other variables in the design equation:

‣ Separate the variables:

‣ Integrate the design equation:

-  

-  

• Linearize the integrated design equation

18

dnA
dt

= −knA
dnA
nA

= −kdt

dnA
nAnA

0

nA

∫ = −k dt
0

t

∫

ln nA
nA
0

⎛
⎝⎜

⎞
⎠⎟
= −kt



‣ Substitute for the other variables in the design equation:

‣ Separate the variables:

‣ Integrate the design equation:

-  

-  

• Linearize the integrated design equation
‣ Model is linear, y = m⋅x

-  

-  
-  

• Calculate the values of y and x for each experimental data point
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‣ Substitute for the other variables in the design equation:

‣ Separate the variables:

‣ Integrate the design equation:

-  

-  

• Linearize the integrated design equation
‣ Model is linear, y = m⋅x

-  

-  
-  

• Calculate the values of y and x for each experimental data point
‣  
‣  

• Fit the linear model to the corresponding x-y data
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‣ Substitute for the other variables in the design equation:

‣ Separate the variables:

‣ Integrate the design equation:

-  

-  

• Linearize the integrated design equation
‣ Model is linear, y = m⋅x

-  

-  
-  

• Calculate the values of y and x for each experimental data point
‣  
‣  

• Fit the linear model to the corresponding x-y data
‣ r2 = 0.91
‣ m = 0.10 ± 0.01 min-1

• Decide if the fit is acceptable and report the values and uncertainties for 
the kinetic parameters

21

dnA
dt

= −knA
dnA
nA

= −kdt

dnA
nAnA

0

nA

∫ = −k dt
0

t

∫

ln nA
nA
0

⎛
⎝⎜

⎞
⎠⎟
= −kt

x = −t

y = ln nA
nA
0

⎛
⎝⎜

⎞
⎠⎟

m = k

nA
0 =VCA

0

nA =VCA



• Read through the problem statement and each time you encounter a 
quantity, assign it to the appropriate variable
• Write the mole balance design equation for the reactor used in the 

experiments
• Substitute the rate expression to be tested into the design equation
• Integrate the mole balance

‣ Identify the dependent and independent variables
‣ Identify any other variable quantities appearing in the mole balance 
‣ Express the other variables in terms of the dependent variable and the independent variable
‣ Substitute for the other variables in the design equation so only the dependent and 

independent variables remain
‣ Separate the variables
‣ Integrate the design equation

• Linearize the integrated design equation
• Calculate the values of y and x for each experimental data point
• Fit the linear model to the corresponding x-y data
• Decide if the fit is acceptable and report the values and uncertainties for 

the kinetic parameters
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Comparison of Differential and Integral Analysis

• Differential Analysis (Activity 14.1c)
‣ Second order polynomial used to 

approximate dnA/dt
- Top right model plot
- r2 = 0.85
- m = 0.10 ± 0.01 min-1

‣ Best finite differences (central differences)
- r2 = 0.16
- m = 0.08 ± 0.03 min-1

• Integral Analysis (Activity 15.1)
‣ Bottom right model plot
‣ r2 = 0.91
‣ m = 0.10 ± 0.01 min-1

• When data are noisy
‣ Integral analysis is preferred

- fit once
‣ Polynomial approximation is second best

- fit twice
‣ Finite differences approximation should be 

avoided
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Where We’re Going

• Part I - Chemical Reactions
• Part II - Chemical Reaction Kinetics

‣ A. Rate Expressions
‣ B. Kinetics Experiments
‣ C. Analysis of Kinetics Data

- 13. CSTR Data Analysis
- 14. Differential Data Analysis
- 15. Integral Data Analysis
- 16. Numerical Data Analysis

• Part III - Chemical Reaction Engineering
• Part IV - Non-Ideal Reactions and Reactors
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